Реклама

Главная - Полезное
Как определить разрешающую способность микроскопа. Разрешающая способность и предел разрешения микроскопа

Разрешающая способность глаза ограничена. Разрешающая способность характеризуется разрешаемым расстоянием , т.е. минимальным расстоянием между двумя соседними частицами, при котором они еще видимы раздельно. Разрешаемое расстояние для невооруженного глаза составляет около 0,2 мм. Для увеличения разрешающей способности используют микроскоп. Для исследования строения металлов микроскоп был впервые применен в 1831 году Аносовым П.П., изучавшим булатную сталь, и позднее, в 1863 году англичанином Г. Сорби, изучавшим метеоритное железо.

Разрешаемое расстояние определяется соотношением:

где l - длина волны света, идущего от объекта исследования в объектив, n – показатель преломления среды, находящейся между объектом и объективом, и a - угловая апертура, равная половине угла раскрытия, входящего в объектив пучка лучей, дающих изображение. Эта важная характеристика объектива выгравирована на его оправе.

У хороших объективов максимальный апертурный угол a = 70° и sina » 0,94. В большинстве исследований применяют сухие объективы, работающие в воздушной среде (n = 1). Для уменьшения разрешаемого расстояния используют иммерсионные объективы. Пространство между объектом и объективом заполняют прозрачной жидкостью (иммерсией) с большим показателем преломления. Обычно используют каплю кедрового масла (n = 1,51).

Если для видимого белого света принять l = 0,55 мкм, то минимальное разрешаемое расстояние светового микроскопа:

Таким образом, разрешающая способность светового микроскопа ограничена длиной волны света. Объектив дает увеличение промежуточного изображения объекта, которое рассматривается в окуляр, как в лупу. Окуляр увеличивает промежуточное изображение объекта и не может повысить разрешающей способности микроскопа.

Общее увеличение микроскопа равно произведению увеличений объектива и окуляра. На металлографических микроскопах производят исследования структуры металлов с увеличением от 20 до 2000 раз.

Начинающие делают обычную ошибку, стремясь рассматривать структуру сразу же при большом увеличении. Следует иметь в виду, что чем больше увеличение объекта, тем меньший участок виден в поле зрения микроскопа. Поэтому рекомендуется начинать исследование с использования слабого объектива, чтобы вначале оценить общий характер структуры металла на большой площади. Если же начинать микроанализ с использования сильного объектива, то многие важные особенности структуры металла могут быть не замечены.

После общего просмотра структуры при малых увеличениях микроскопа выбирают объектив с такой разрешающей способностью, чтобы увидеть все необходимые самые мелкие детали структуры.

Окуляр выбирают так, чтобы четко были видны детали структуры, увеличенные объективом. При недостаточном увеличении окуляра мелкие детали промежуточного изображения, созданного объективом, не будут увидены в микроскоп, и, таким образом, разрешающая способность объектива полностью не будет использована. При слишком большом увеличении окуляра новые детали структуры не выявляются, в то же время контуры уже выявленных деталей окажутся размытыми, а поле зрения станет более узким. Собственное увеличение окуляра выгравировано на его оправе (например, 7 х).

2. Оптическая система микроскопа.

3. Увеличение микроскопа.

4. Предел разрешения. Разрешающая способность микроскопа.

5. Полезное увеличение микроскопа.

6. Специальные приемы микроскопии.

7. Основные понятия и формулы.

8. Задачи.

Способность глаза различать мелкие детали предмета зависит от размеров изображения на сетчатке или от угла зрения. Для увеличения угла зрения используют специальные оптические приборы.

25.1. Лупа

Простейшим оптическим прибором для увеличения угла зрения является лупа, представляющая собой короткофокусную собирающую линзу (f = 1-10 см).

Рассматриваемый предмет помещают между лупой и ее передним фокусом с таким расчетом, чтобы его мнимое изображение находилось в пределах аккомодации для данного глаза. Обычно используют плоскости дальней или ближней аккомодации. Последний случай предпочтительнее, так как глаз не утомляется (кольцевая мышца не напряжена).

Сравним углы зрения, под которыми виден предмет, рассматриваемый «невооруженным» нормальным глазом и с помощью лупы. Расчеты выполним для случая, когда мнимое изображение предмета получается на бесконечности (дальний предел аккомодации).

При рассматривании предмета невооруженным глазом (рис. 25.1, а) для получения максимального угла зрения предмет нужно поместить на расстояние наилучшего зрения а 0 . Угол зрения, под которым при этом виден предмет, равен β = В/а 0 (В - размер предмета).

При рассматривании предмета с помощью лупы (рис. 25.1, б) его помещают в передней фокальной плоскости лупы. При этом глаз видит мнимое изображение предмета В", расположенное в бесконечно удаленной плоскости. Угол зрения, под которым видно изображение, равен β" ≈ В/f.

Рис. 25.1. Углы зрения: а - невооруженным глазом; б - с помощью лупы: f - фокусное расстояние лупы; N - узловая точка глаза

Увеличение лупы - отношение угла зрения β", под которым видно изображение предмета в лупе, к углу зрения β, под которым предмет виден «невооруженным» нормальным глазом с расстояния наилучшего зрения:

Увеличения лупы для близорукого и дальнозоркого глаза разные, так как у них различны расстояния наилучшего зрения.

Приведем без вывода формулу для увеличения, которое дает лупа, используемая близоруким или дальнозорким глазом при формировании изображения в плоскости дальней аккомодации:

где а даль - дальний предел аккомодации.

Формула (25.1) позволяет предположить, что, уменьшая фокусное расстояние лупы, можно добиться сколь угодно большого увеличения. В принципе это так. Однако при уменьшении фокусного расстояния лупы и сохранении ее размеров возникают такие аберрации, которые сводят на нет весь эффект увеличения. Поэтому однолинзовые лупы обычно имеют 5-7-кратное увеличение.

Для уменьшения аберраций изготавливают сложные лупы, состоящие из двух-трех линз. В этом случае удается добиться 50-кратного увеличения.

25.2. Оптическая система микроскопа

Большее увеличение можно осуществить, рассматривая при помощи лупы действительное изображение предмета, создаваемое другой линзой или системой линз. Такое оптическое устройство реализовано в микроскопе. Лупу в этом случае называют окуляром, а другую линзу - объективом. Ход лучей в микроскопе показан на рис. 25.2.

Предмет В помещается вблизи переднего фокуса объектива (F об) с таким расчетом, чтобы его действительное, увеличенное изображение B" находилось между окуляром и его передним фокусом. При

Рис. 25.2. Ход лучей в микроскопе.

этом окуляр дает мнимое увеличенное изображение B", которое и рассматривает глаз.

Изменяя расстояние между предметом и объективом, добиваются того, чтобы изображение В" оказалось в плоскости дальней аккомодации глаза (в этом случае глаз не утомляется). Для человека с нормальным зрением В" располагается в фокальной плоскости окуляра, а В" получается на бесконечности.

25.3. Увеличение микроскопа

Основной характеристикой микроскопа является его угловое увеличение. Это понятие аналогично угловому увеличению лупы.

Увеличение микроскопа - отношение угла зрения β", под которым видно изображение предмета в окуляре, к углу зрения β, под которым предмет виден «невооруженным» глазом с расстояния наилучшего зрения (а 0):

25.4. Предел разрешения. Разрешающая способность микроскопа

Может сложиться впечатление, что, увеличивая оптическую длину тубуса, можно добиться сколь угодно большого увеличения и, следовательно, рассмотреть самые мелкие детали предмета.

Однако учет волновых свойств света показывает, что на размеры мелких деталей, различимых с помощью микроскопа, накладываются ограничения, связанные с дифракцией света, проходящего через отверстие объектива. Вследствие дифракции изображением освещенной точки оказывается не точка, а небольшой светлый кружок. Если рассматриваемые детали (точки) предмета расположены достаточно далеко, то объектив даст их изображения в виде двух отдельных кружков и их можно различить (рис. 25.3, а). Наименьшему расстоянию между различимыми точками соответствует «касание» кружков (рис. 25.3, б). Если точки расположены очень близко, то соответствующие им «кружки» перекрываются и воспринимаются как один объект (рис. 25.3, в).

Рис. 25.3. Разрешающая способность

Основной характеристикой, показывающей возможности микроскопа в этом отношении, является предел разрешения.

Предел разрешения микроскопа (Z) - наименьшее расстояние между двумя точками предмета, при котором они различимы как отдельные объекты (т.е. воспринимаются в микроскопе как две точки).

Величина, обратная пределу разрешения, называется разрешающей способностью. Чем меньше предел разрешения, тем больше разрешающая способность.

Теоретический предел разрешения микроскопа зависит от длины волны света, используемого для освещения, и от угловой апертуры объектива.

Угловая апертура (u) - угол между крайними лучами светового пучка, входящего в линзу объектива от предмета.

Укажем без вывода формулу для предела разрешения микроскопа в воздушной среде:

где λ - длина волны света, которым освещается объект.

У современных микроскопов угловая апертура достигает 140°. Если принять λ = 0,555 мкм, то получим для предела разрешения значение Z = 0,3 мкм.

25.5. Полезное увеличение микроскопа

Выясним, насколько большим должно быть увеличение микроскопа при заданном пределе разрешения его объектива. Примем во внимание, что у глаза имеется собственный предел разрешения, обусловленный строением сетчатки. В лекции 24 мы получили следующую оценку для предела разрешения глаза: Z ГЛ = 145-290 мкм. Для того чтобы глаз мог различить те же точки, которые разделяет микроскоп, необходимо увеличение

Это увеличение называют полезным увеличением.

Отметим, что при использовании микроскопа для фотографирования объекта в формуле (25.4) вместо Z ГЛ следует использовать предел разрешения пленки Z ПЛ.

Полезное увеличение микроскопа - увеличение, при котором предмет, имеющий размер, равный пределу разрешения микроскопа, имеет изображение, размер которого равен пределу разрешения глаза.

Используя полученную выше оценку для предела разрешения микроскопа Z м ≈0,3 мкм), найдем: Г п ~500-1000.

Добиваться большего значения для увеличения микроскопа не имеет смысла, так как никаких дополнительных деталей увидеть все равно не удастся.

Полезное увеличение микроскопа - это разумное сочетание разрешающих способностей и микроскопа, и глаза.

25.6. Специальные приемы микроскопии

Специальные приемы микроскопии используются для увеличения разрешающей способности (уменьшения предела разрешения) микроскопа.

1. Иммерсия. В некоторых микроскопах для уменьшения предела разрешения пространство между объективом и предметом заполняют специальной жидкостью - иммерсией. Такой микроскоп называют иммерсионным. Эффект иммерсии заключается в уменьшении длины волны: λ = λ 0 /n, где λ 0 - длина световой волны в вакууме, а n - показатель преломления иммерсии. В этом случае предел разрешения микроскопа определяется следующей формулой (обобщение формулы (25.3)):

Отметим, что для иммерсионных микроскопов создают специальные объективы, так как в жидкой среде изменяется фокусное расстояние объектива.

2. УФ-микроскопия. Для уменьшения предела разрешения используют коротковолновое ультрафиолетовое излучение, невидимое глазом. В ультрафиолетовых микроскопах микрообъект исследуется в УФлучах (в этом случае линзы выполняются из кварцевого стекла, а регистрация ведется на фотопленке или на специальном люминесцентном экране).

3. Измерение размеров микроскопических объектов. С помощью микроскопа можно определить размеры наблюдаемого объекта. Для этого применяют окулярный микрометр. Простейший окулярный микрометр представляет собой круглую стеклянную пластинку, на которой нанесена шкала с делениями. Микрометр устанавливают в плоскости изображения, получаемого от объектива. При рассматривании в окуляр изображения объекта и шкалы сливаются, можно отсчитать, какое расстояние по шкале соответствует измеряемой величине. Предварительно определяют по известному объекту цену деления окулярного микрометра.

4. Микропроекция и микрофотография. С помощью микроскопа можно не только наблюдать объект через окуляр, но и фотографировать его или проецировать на экран. В этом случае применяют специальные окуляры, которые и проецируют промежуточное изображение A"B" на пленку или на экран.

5. Ультрамикроскопия. Микроскоп позволяет обнаружить частицы, размеры которых лежат за пределами его разрешения. Этот метод использует косое освещение, благодаря чему микрочастицы видны как светлые точки на темном фоне, при этом строение частиц увидеть нельзя, можно только установить факт их наличия.

Теория показывает, что, как бы силен не был микроскоп, всякий предмет размерами меньше 3 мкм будет представляться в нем просто как одна точка, без всяких подробностей. Но это не означает, что такие частицы нельзя видеть, следить за их движениями или считать их.

Для наблюдения частиц, размеры которых меньше предела разрешения микроскопа, служит приспособление, называемое ультрамикроскоп. Главную часть ультрамикроскопа составляет сильное осветительное приспособление; освещенные таким образом частицы наблюдаются в обыкновенном микроскопе. Ультрамикроскопия основана на том, что мелкие частицы, взвешенные в жидкости или газе, делаются видимыми при сильном боковом освещении (вспомним пылинки, видимые в солнечном луче).

25.8. Основные понятия и формулы

Окончание таблицы

25.8. Задачи

1. Линза с фокусным расстоянием 0,8 см используется в качестве объектива микроскопа с фокусным расстоянием окуляра, равным 2 см. Оптическая длина тубуса равна 18 см. Каково увеличение микроскопа?

2. Определить предел разрешения сухого и иммерсионного (n = 1,55) объективов c угловой апертурой u = 140 о. Длину волны принять равной 0,555 мкм.

3. Чему равен предел разрешения на длине волны λ = 0,555 мкм, если числовая апертура равна: А 1 = 0,25, А 2 = 0,65?

4. С каким показателем преломления следует взять иммерсионную жидкость, чтобы рассмотреть в микроскопе субклеточный элемент диаметром 0,25 мкм при наблюдении через оранжевый светофильтр (длина волны 600 нм)? Апертурный угол микроскопа 70°.

5. На ободке лупы имеется надпись «х10» Определить фокусное расстояние этой лупы.

6. Фокусное расстояние объектива микроскопа f 1 = 0,3 см, длина тубуса Δ = 15 см, увеличение Г = 2500. Найти фокусное расстояние F 2 окуляра. Расстояние наилучшего зрения a 0 = 25 см.

Для обнаружения и исследования микроорганизмов применяют микроскопы. Световые микроскопы предназначены для изучения микроорганизмов, которые имеют размеры не менее 0,2 мкм (бактерии, простейшие и т. п.) a электронные для изучения более мелких микроорганизмов (вирусы) и мельчайших структур бактерий.
Современные световые микроскопы - это сложные оптические приборы, обращение с которыми требует определенных знаний, навыков и большой аккуратности.
Световые микроскопы подразделяются на студенческие, рабочие, лабораторные и исследовательские, различающиеся по конструкции и комплектации оптикой. Отечественные микроскопы (Биолам", "Бимам", "Микмед") имеют обозначения, указывающие, к какой группе они относятся (С - студенческие, Р - рабочие, Л - лабораторные, И - исследовательские), комплектация обозначается цифрой.

В микроскопе различают механическую и оптическую части.
К механической части относятся: штатив (состоящий из основания и тубусодержателя) и укрепленные на нем тубус с револьвером для крепления и смены объективов, предметный столик для препарата, приспособления для крепления конденсора и светофильтров, а также встроенные в штатив механизмы для грубого (макромеханизм, макровинт) и тонкого
(микромеханизм, микровинт) перемещения предметного столика или тубусодержателя.
Оптическая часть микроскопа представлена объективами, окулярами и осветительной системой, которая в свою очередь состоит из расположенных под предметным столиком конденсора Аббе, зеркала, имеющего плоскую и вогнутую сторону, а также отдельного или встроенного осветителя. Объективы ввинчиваются в револьвер, а соответствующий окуляр, через который наблюдают изображение, устанавливают с противоположной стороны тубуса. Различают монокулярный (имеющий один окуляр) и бинокулярный (имеющий два одинаковых окуляра) тубусы.

Принципиальная схема микроскопа и осветительной системы

1. Источник света;
2. Коллектор;
3. Ирисовая полевая диафрагма;
4. Зеркало;
5. Ирисовая аппертурная диафрагма;
6. Конденбсор;
7. Препарат;
7". Увеличенное действительное промежуточное изображение препарата, образуемое; объективом;
7"". Увеличенное мнимое окончательное изображение препарата, наблюдаемое в окуляре;
8. Объектив;
9. выходной значок объектива;
10. Полевая диафрагма окуляра;
11. Окуляр;
12. Глаз.

Основную роль в получении изображения играет объектив . Он строит увеличенное, действительное и перевернутое изображение объекта. Затем это изображение дополнительно увеличивается при рассматривании его через окуляр, который аналогично обычной лупе дает увеличенное мнимое изображение.
Увеличение микроскопа ориентировочно можно определить, умножая увеличение объектива на увеличение окуляра. Однако увеличение не определяет качества изображения. Качество изображения, его четкость, определяется разрешающей способностью микроскопа , т. е. возможностью различать раздельно две близко расположенные точки. Предел разрешения - минимальное расстояние, на котором эти точки еще видны раздельно,- зависит от длины волны света, которым освещается объект, и числовой апертуры объектива. Числовая апертура, в свою очередь, зависит от угловой апертуры объектива и показателя преломления среды, находящейся между фронтальной линзой объектива и препаратом. Угловая апертура-это максимальный угол, под которым могут попадать в объектив лучи, прошедшие через объект. Чем больше апертура и чем ближе показатель преломления среды, находящейся между объективом и препаратом, к показателю преломления стекла, тем выше разрешающая способность объектива. Если считать апертуру конденсора равной апертуре объектива, то формула разрешающей способности имеет следующий вид:

где R - предел разрешения; - длина волны; NA - числовая апертура.

Различают полезное и бесполезное увеличение. Полезное увеличение обычно равно числовой апертуре объектива, увеличенной в 500-1000 раз. Более высокое окулярное увеличение не выявляет новых деталей и является бесполезным.
В зависимости от среды, которая находится между объективом и препаратом, различают «сухие» объективы малого и среднего увеличения (до 40 х) и иммерсионные с максимальной апертурой и увеличением (90-100 х). «Сухой» объектив - это такой объектив, между фронтальной линзой которого и препаратом, находится воздух.

Особенностью иммерсионных объективов является то, что между фронтальной линзой такого объектива и препаратом помещают иммерсионную жидкость, имеющую показатель преломления такой же, как стекло (или близкий к нему), что обеспечивает увеличение числовой апертуры и разрешающей способности объектива. В качестве иммерсионной жидкости для объективов водной иммерсии используют дистиллированную воду, а для объективов масляной иммерсии-кедровое масло или специальное синтетическое иммерсионное масло. Использование синтетического иммерсионного масла предпочтительнее, поскольку его параметры более точно нормируются, и оно в отличие от кедрового, не засыхает на поверхности фронтальной линзы объектива. Для объективов, работающих в ультрафиолетовой области спектра, в качестве иммерсионной жидкости используют глицерин. Ни в коем случае нельзя пользоваться суррогатами иммерсионного масла и, в частности, вазелиновым маслом.
**Изображение, полученное с помощью линз, обладает различными недостатками: сферической и хроматической аберрациями, кривизной поля изображения и др. В объективах, состоящих из нескольких линз, эти недостатки в той или иной мере исправлены. В зависимости от степени исправления этих недостатков различают объективы ахроматы и более сложные апохроматы. Соответственно объективы, в которых исправлена кривизна поля изображения, называются планахроматами и планапохроматами. Использование этих объективов позволяет получить резкое изображение по всему полю, тогда как изображение, полученное с помощью обычных объективов, не имеет одинаковой резкости в центре и на краях поля зрения. Все характеристики объектива обычно выгравированы на его оправе: собственное увеличение, апертура, тип объектива (АПО - апохромат и т. п.); объективы водной иммерсии имеют обозначение ВИ и белое кольцо вокруг оправы в нижней ее части, объективы масляной иммерсии-обозначение МИ и черное кольцо.
Все объективы рассчитаны для работы с покровным стеклом толщиной 0,17мм.
Толщина покровного стекла особенно влияет на качество изображения при работе с сильными сухими системами (40 х). При работе с иммерсионными объективами нельзя пользоваться покровными стеклами толще 0,17 мм потому, что толщина покровного стекла может оказаться больше, чем рабочее расстояние объектива, и в этом случае, при попытке сфокусировать объектив на препарат, может быть повреждена фронтальная линза объектива.
Окуляры состоят из двух линз и тоже бывают нескольких типов, каждый из которых применяется с определенным типом объектива, дополнительно устраняя недостатки изображения. Тип окуляра и его увеличение обозначены на его оправе.
Конденсор предназначен для того, чтобы сфокусировать на препарате свет от осветителя, направляемый зеркалом микроскопа или осветителя (в случае использования накладного или встроенного осветителя). Одной из деталей конденсора является апертурная диафрагма, которая имеет важное значения для правильного освещения препарата.
Осветитель состоит из низковольтной лампы накаливания с толстой нитью, трансформатора, коллекторной линзы и полевой диафрагмы, от раскрытия, которой зависит диаметр освещенного поля на препарате. Зеркало направляет свет от осветителя в конденсор. Для того чтобы сохранить параллельность лучей, идущих от осветителя в конденсор, необходимо использовать только плоскую сторону зеркала.

Настройка освещения н фокусировка микроскопа

Качество изображения в значительной мере зависит также от правильного освещения. Существует несколько различных способов освещения препарата при микроскопии. Наиболее распространенным является способ установки света по Келеру , который заключается в следующем:
1) устанавливают осветитель против зеркала микроскопа;
2) включают лампу осветителя и направляют свет на плоское (!) зеркало микроскопа;
3)помещают препарат на предметный столик микроскопа;
4) закрывают зеркало микроскопа листком белой бумаги и фокусируют на нем изображение нити лампы, передвигая патрон лампы в осветителе;
5) убирают лист бумаги с зеркала;
6) закрывают апертурную диафрагму конденсора. Перемещая зеркало и слегка передвигая патрон лампы, фокусируют изображение нити на апертурной диафрагме. Расстояние осветителя от микроскопа должно быть таким, чтобы изображение нити лампы было равно диаметру апертурной диафрагмы конденсора (наблюдать апертурную диафрагму можно с помощью плоского зеркала, помещенного с правой стороны основания микроскопа).
7)открывают апертурную диафрагму конденсора, уменьшают отверстие полевой диафрагмы осветителя и значительно уменьшают накал лампы;
8) при малом увеличении (10х), глядя в окуляр, получают резкое изображение препарата;
9)слегка поворачивая зеркало, переводят изображение полевой диафрагмы, которое имеет вид светлого пятна, в центр поля зрения. Опуская и поднимая конденсор, добиваются получения резкого изображения краев полевой диафрагмы в плоскости препарата (вокруг них может быть видна цветная каемка);
10) раскрывают полевую диафрагму осветителя до краев поля зрения, увеличивают накал нити лампы и слегка (на 1/3) уменьшают раскрытие апертурной диафрагмы конденсора;
11)при смене объектива необходимо проверить настройку света.
После окончания настройки света по Келеру нельзя изменять положение конденсораf раскрытие полевой и апертурной диафрагмы. Освещенность препарата можно регулировать только нейтральными светофильтрами или изменением накала лампы с помощью реостата. Излишнее открытие апертурной диафрагмы конденсора может привести к значительному снижению контраста изображения, а недостаточное - к значительному ухудшению качества изображения (появлению диффракционных колец). Для проверки правильности раскрытия апертурной диафрагмы необходимо удалить окуляр и, глядя в тубус, открыть ее таким образом, чтобы она закрывала светящееся поле на одну треть. Для правильного освещения препарата при работе с объективами малого увеличения (до 10х) необходимо отвинтить и снять верхнюю линзу конденсора.
Внимание! При работе с объективами, дающими большое увеличение - с сильными сухими (40х) и иммерсионными (90х) системами, чтобы не повредить фронтальную линзу, при фокусировке пользуются следующим приемом: наблюдая сбоку, опускают объектив макровинтом почти до соприкосновения с препаратом, затем, глядя в окуляр, макровинтом очень медленно поднимают объектив до появления изображения и с помощью микровинта производят окончательную фокусировку микроскопа.

Уход за микроскопом

При работе с микроскопом нельзя применять большие усилия. Нельзя касаться пальцами поверхности линз, зеркал и светофильтров.
Чтобы предохранить внутренние поверхности объективов, а также призмы тубуса от попадания пыли, необходимо всегда оставлять окуляр в тубусе. При чистке внешних поверхностей линз нужно удалить с них пыль мягкой кисточкой, промытой в эфире. Если необходимо, осторожно протирают поверхности линз хорошо выстиранной, не содержащей остатков мыла, полотняной или батистовой тряпочкой, слегка смоченной чистым бензином, эфиром или специальной смесью для чистки оптики. Не рекомендуется протирать оптику объективов ксилолом, так как это может привести к их расклеиванию.
С зеркал, имеющих наружное серебрение, можно только удалять пыль, сдувая ее резиновой грушей. Протирать их нельзя. Нельзя также самостоятельно развинчивать и разбирать объективы - это приведет к их порче. По окончании работы на микроскопе необходимо тщательно удалить остатки иммерсионного масла с фронтальной линзы объектива указанным выше способом. Затем опустить предметный столик (или конденсор в микроскопах с неподвижным столиком) и накрыть микроскоп чехлом.
Для сохранения внешнего вида микроскопа необходимо периодически протирать его мягкой тряпкой, слегка пропитанной бескислотным вазелином и затем сухой мягкой чистой тряпкой.

Помимо обычной световой микроскопии существуют методы микроскопии, позволяющие изучать неокрашенные микроорганизмы: фазово-контрастная , темнопольная и люминесцентная микроскопия. Для изучения микроорганизмов и их структур, размер которых меньше разрешающей способности светового микроскопа используют

Предмет h помещают несколько дальше переднего фокуса объектива. Объектив дает действительное, обратное, увеличенное изображение H , находящееся между передним фокусом окуляра и оптическим центром окуляра. Это промежуточное изображение рассматривается в окуляр как в лупу. Окуляр дает мнимое, прямое, увеличенное изображение H , которое расположено на расстоянии наилучшего зрения S ≈ 25 см от оптического центра глаза.

Это изображение мы рассматриваем глазом, на его сетчатке формируется действительное, обратное, уменьшенное изображение.

Увеличение микроскопа – отношение размеров мнимого изображения к размерам рассматриваемого через микроскоп предмета:
. Умножим числитель и знаменатель на размер промежуточного изображения H :
. Таким образом, увеличение микроскопа равно произведению увеличения объектива на увеличение окуляра. Увеличение объектива можно выразить через характеристики микроскопа, используя подобие прямоугольных треугольников
, где L оптическая длина тубуса : расстояние между задним фокусом объектива и передним фокусом окуляра (считаем, что L >> F об). Увеличение окуляра
. Следовательно, увеличение микроскопа равно:
.

4. Разрешающая способность и предел разрешения микроскопа. Дифракционные явления в микроскопе, понятие о теории Аббе.

Предел разрешения микроскопа z – это наименьшее расстояние между двумя точками рассматриваемого в микроскоп объекта, когда эти точки еще воспринимаются отдельно. Предел разрешения обычного биологического микроскопа лежит в диапазоне 34 мкм. Разрешающей способностью микроскопа называют способность давать раздельное изображение двух близко расположенных точек исследуемого объекта, то есть это величина, обратная пределу разрешения.

Дифракция света налагает предел на возможность различения деталей объектов при их наблюдении в микроскоп. Так как свет распространяется не прямолинейно, а огибает препятствия (в данном случае, рассматриваемые объекты), то изображения мелких деталей объектов получаются размытыми.

Э. Аббе предложил дифракционную теорию разрешающей способности микроскопа . Пусть предметом, который мы хотим рассмотреть в микроскоп, будет дифракционная решетка с периодом d . Тогда минимальная деталь предмета, которую мы должны различить, как раз и будет периодом решетки. На решетке происходит дифракция света, но диаметр объектива микроскопа ограничен, и при больших углах дифракции не весь свет, прошедший через решетку, попадает в объектив. Реально свет от предмета распространяется к объективу в некотором конусе. Получаемое изображение тем ближе к оригиналу, чем больше максимумов участвует в формировании изображения. Свет от предмета распространяется к объективу от конденсора в виде конуса, который характеризуется угловой апертурой u – угол, под которым виден объектив из центра рассматриваемого предмета, то есть угол между крайними лучами конического светового пучка, входящего в оптическую систему. Согласно Э. Аббе, для получения изображения решетки, даже самого нечеткого, в объектив должны попасть лучи любых двух порядков дифракционной картины, например, лучи, образующие центральный и, по крайней мере, первый дифракционный максимум. Вспомним, что для наклонного падения лучей на дифракционную решетку ее главная формула имеет вид: . Если свет падает под углом , а угол дифракции для первого максимума равен
, то формула приобретает вид
. За предел разрешения микроскопа следует принять постоянную дифракционной решетки, тогда
, где  - длина волны света.

Как видно из формулы, один из способов уменьшения предела разрешения микроскопа – использование света с меньшей длиной волны. В связи с этим применяют ультрафиолетовый микроскоп, в котором микрообъекты исследуются в ультрафиолетовых лучах. Принципиальная оптическая схема такого микроскопа аналогична схемам обычного микроскопа. Основное отличие заключается в использовании оптических устройств, прозрачных для УФ-света, и в особенностях регистрации изображения. Так как глаз не воспринимает ультрафиолетовое излучение (кроме того, оно обжигает глаза, т.е. является опасным для органа зрения), то употребляются фотопластинки, люминесцентные экраны или электронно-оптические преобразователи.

Если в пространство между объективом и покровным стеклом препарата поместить специальную жидкую среду, называемую иммерсией , то предел разрешения также уменьшается:
, где n – абсолютный показатель преломления иммерсии, A числовая апертура объектива . В качестве иммерсии используют воду (n = 1,33), кедровое масло (n = 1,515), монобромнафталин (n = 1,66) и др. Для каждого вида иммерсии изготавливают специальный объектив, и его можно применять только с данным видом иммерсии.

Еще один способ уменьшения предела разрешения микроскопа – это увеличение апертурного угла. Этот угол зависит от размеров объектива и расстояния от предмета до объектива. Однако расстояние от предмета до линзы нельзя изменять произвольно, оно постоянно для каждого объектива и приближать предмет нельзя. В современных микроскопах апертурный угол достигает 140 о (соответственно, u /2 = 70 о). С таким углом получают максимальные числовые апертуры и минимальные пределы разрешения.

Данные приведены для наклонного падения света на объект и длины волны 555 нм, к которой наиболее чувствителен глаз человека.

Обратите внимание на то, что окуляр совершенно не влияет на разрешающую способность микроскопа, он только создает увеличенное изображение объектива.

 


Читайте:



Характеристика сотрудника с места работы, как написать, скачать примеры

Характеристика сотрудника с места работы, как написать, скачать примеры

Рассмотрим образец характеристики на рабочего с места работы - документ, характеризующий профессиональные качества сотрудника. Как и кто должен...

Должностные обязанности заведующего складом Зав складом относится к категории специалистов

Должностные обязанности заведующего складом Зав складом относится к категории специалистов

1. Заведующий продовольственным складом - Должностная инструкция. 1. ОБЩИЕ ПОЛОЖЕНИЯ 1.1. Заведующий продовольственным складом относится к...

Современные проблемы системного анализа и управления Системность практической деятельности

Современные проблемы системного анализа и управления Системность практической деятельности

Характеристика АТП и сварочно-жестяницкого участка : Транспорт в настоящее время является одной из важнейших отраслей народного...Техника...

Стол письменный бейли с ящиками

Стол письменный бейли с ящиками

Описание Доставка Оплата Правила ухода СамовывозВы можете самостоятельно забрать Ваш заказ с нашего склада, по адресу: МО рп. Нахабино, ул....

feed-image RSS