Реклама

Главная - Бизнес идеи
Жизненный цикл требования. Жизненный цикл программы

Аннотация.

Введение.

1. Жизненный цикл ПО

Введение.

Шаги процесса программирования по Райли

Введение.

1.1.1. Постановка задачи.

1.1.2. Проектирование решения.

1.1.3. Кодирование алгоритма.

1.1.4. Сопровождение программы.

1.1.5. Программная документация.

Вывод к п. 1.1

1.2. Определение ЖЦПО по Леману.

Введение.

1.2.1 Определение системы.

1.2.2. Реализация.

1.2.3. Обслуживание.

Вывод к п. 1.2.

1.3. Фазы и работы ЖЦПО по Боэму

1.3.1. Каскадная модель.

1.3.2. Экономическое обоснование каскадной модели.

1.3.3. Усовершенствование каскадной модели.

1.3.4. Определение фаз жизненного цикла.

1.3.5. Основные работы над проектом.

Литература.


Введение

Промышленное применение компьютеров и растущий спрос на программы поставили актуальные задачи существенного повышения производительности разработки ПО , разработки индустриальных методов планирования и проектирования программ, переноса организационно-технических, технико-экономических и социально-психологических приемов, закономерностей и методов из сферы материального производства в сферу применения компьютеров. Комплексный подход к процессам разработки, эксплуатации и сопровождения ПО выдвинул ряд насущных проблем, решение которых исключит «узкие места» в проектировании программ, уменьшит сроки завершения работ, улучшит выбор и адаптацию существующих программ, а может быть и определит судьбу систем со встроенными ЭВМ.

В практике разработок больших программных проектов зачастую отсутствует единый подход к оцениванию затрат труда, сроков проведения работ и материальных затрат, что сдерживает повышение производительности разработки ПО, а в конечном счете – эффективное управление жизненным циклом ПО. Поскольку программа любого типа становится изделием (кроме, может быть, учебных, макетных программ), подход к ее изготовлению во многом должен быть аналогичен подходу к производству промышленной продукции, и вопросы проектирования программ становятся чрезвычайно важными. Эта идея лежит в основе книги Б.У. Боэма «Инженерное проектирование программного обеспечения», которую мы использовали при написании данной курсовой работы. В этой книге под проектированием ПО понимается процесс создания проекта программного изделия.


1 Жизненный цикл ПО

ВВЕДЕНИЕ

ЖЦПО – это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

Существует несколько подходов при определении фаз и работ жизненного цикла программного обеспечения (ЖЦПО), шагов процесса программирования, каскадная и спиральная модели. Но все они содержат общие основополагающие компоненты: постановка задачи, проектирование решения, реализация, обслуживание.

Наиболее известной и полной, пожалуй, является структура ЖЦПО по Боэму, включающая восемь фаз. Она и будет представлена в дальнейшем наиболее подробно.

Одним из возможных вариантов может послужить описание верхнего уровня по Леману, включающее три основные фазы и представляющее описание ЖЦПО в самом общем случае.

И, для разнообразия, – приведем шаги процесса программирования, представленные Д.Райли в книге «Использование языка Модула-2». Это представление, по-моему, является весьма простым и привычным, с него и начнём.

1.1 Шаги процесса программирования по Райли

Процесс программирования включает четыре шага (рис. 1):

постановка задачи, т.е. получение адекватного представления о том, какую задачу должна выполнить программа;

проектирование решения уже поставленной задачи (в общем, такое решение является менее формальным, чем окончательная программа);

кодирование программы, т. е. перевод спроектированного решения в программу, которая может быть выполнена на машине;

сопровождение программы, т.е. непрекращающийся процесс устранения в программе неполадок и добавления новых возможностей.

Рис. 1.Четыре шага программирования.

Программирование начинается с того момента, когда пользователь , т.е. тот, кто нуждается в программе для решения задачи, излагает проблему системному аналитику. Пользователь и системный аналитик совместно определяют постановку задачи. Последняя затем передается алгоритмисту , который отвечает за проектирование решения. Решение (или алгоритм) представляет последовательность операций, выполнение которых приводит к решению задачи. Поскольку алгоритм часто не приспособлен к выполнению на машине, его следует перевести в машинную программу. Эта операция выполняется кодировщиком. За последующие изменения в программе несет ответственность сопровождающийпрограммист. И системный аналитик, и алгоритмист, и кодировщик, и сопровождающий программист – все они являются программистами.

В случае большого программного проекта число пользователей, системных аналитиков и алгоритмистов может оказаться значительным. Кроме того, может возникнуть необходимость вернуться к предшествующим шагам в силу непредвиденных обстоятельств. Все это служит дополнительным аргументом в пользу тщательного проектирования программного обеспечения: результаты каждого шага должны быть полными, точными и понятными.

1.1.1 Постановка задачи

Одним из наиболее важных шагов программирования является постановка задачи. Она выполняет функции контракта между пользователем и программистом (программистами). Как и юридически плохо составленный контракт, плохая постановка задачи бесполезна. При хорошей постановке задачи как пользователь, так и программист ясно и недвусмысленно представляют задачу, которую необходимо выполнить, т.е. в этом случае учитываются интересы как пользователя, так и программиста. Пользователь может планировать использование еще несозданного программного обеспечения, опираясь на знание того, что оно может. Хорошая постановка задачи служит основой для формирования ее решения.

Постановка задачи (спецификация программы ); по существу, означает точное, полное и понятное описание того, что происходит при выполнении конкретной программы. Пользователь обычно смотрит на компьютер, как на черный ящик: для него неважно, как работает компьютер, а важно, что может компьютер из того, что интересует пользователя. При этом основное внимание фокусируется на взаимодействии человека с машиной.

Характеристики Хорошей Постановки Задачи:

Точность , т.е. исключение любой неоднозначности. Не должно возникать вопросов относительно того, каким будет вывод программы при каждом конкретном вводе.

Полнота , т.е. рассмотрение всех вариантов для заданного ввода, включая ошибочный или непредусмотренный ввод, и определение соответствующего вывода.

Ясность , т.е. она должна быть понятной и пользователю и системному аналитику, поскольку постановка задачи – это единственный контракт между ними.

Часто требование точности, полноты и ясности находятся в противоречии. Так, многие юридические документы трудно понять, потому что они написаны на формальном языке, который позволяет предельно точно сформулировать те или иные положения, исключая любые самые незначительные разночтения. Например, некоторые вопросы в экзаменационных билетах иногда сформулированы настолько точно, что студент тратит больше времени на то, чтобы понять вопрос, чем на то чтобы на него ответить. Более того, студент вообще может не уловить основной смысл вопроса из-за большого количества деталей. Наилучшая постановка задачи та, при которой достигается баланс всех трех требований.

Стандартная форма постановки задачи.

Рассмотрим следующую постановку задачи: «Ввести три числа и вывести числа в порядке».

Такая постановка не удовлетворяет приведенным выше требованиям: она не является ни точной, ни полной, ни понятной. Действительно, должны ли числа вводиться по одному на строке или все числа на одной строке? Означает ли выражение «в порядке» упорядочение от большего к меньшему, от меньшего к большему или тот же порядок, в каком они были введены.

Очевидно, что подобная постановка не отвечает на множество вопросов. Если же учесть ответы на все вопросы, то постановка задачи станет многословной и трудной для восприятия. Поэтому Д. Райли предлагает для постановки задачи пользоваться стандартной формой, которая обеспечивает максимальную точность, полноту, ясность и включает:

наименование задачи (схематическое определение);

общее описание (краткое изложение задачи);

ошибки (явно перечислены необычные варианты ввода, чтобы показать пользователям и программистам те действия, которые предпримет машина в подобных ситуациях);

пример (хороший пример может передать сущность задачи, а также проиллюстрировать различные случаи).

Пример. Постановка задачи в стандартной форме.

НАЗВАНИЕ

Сортировка трех целых чисел.

ОПИСАНИЕ

Ввод и вывод трех целых чисел, отсортированных от меньшего числа к большему.

Вводятся три целых числа по одному числу на строке. При этом целым числом является одна или несколько последовательных десятичных цифр, которым может предшествовать знак плюс «+» или знак минус «–».

Выводятся три введенных целых числа, причем все три выводятся на одной строке. Смежные числа разделяются пробелом. Числа выводятся от меньшего к большему, слева направо.

1) Если введено менее трех чисел, программа ждет дополнительного ввода.

2) Строки ввода, кроме первых трех, игнорируются.

3) Если какая-либо из первых трех строк содержит более одного целого числа, то программа завершает работу и выдает сообщение.

ОШИБКА ВВОДА – допускается только одно целое число на строке.

ввод ® – 3

Этот шаг программирования является наиболее трудным. На данной стадии постановка задачи должна быть превращена в алгоритм. Поэтому алгоритмист должен обладать достаточным опытом программирования и подходить к каждой новой задаче, опираясь на твердо установленную методику проектирования. К сожалению, в настоящее время все большие программы содержат ошибки, что приводит к скверным проектам. Плохие проекты в свою очередь являются следствием сложности задач и использования неадекватных методов проектирования. Чтобы избежать ошибок в программах, алгоритмисты должны использовать тщательно разработанные процедуры конструирования, основанные на правилах логического вывода.

Существуют две основные модели вывода:

Первая модель известна как дедуктивный вывод. Эту форму логического мышления обессмертил знаменитый сыщик Шерлок Холмс. Дедуктивная логика применяет общие правила к конкретным случаям. Например, Холмс мог вывести конкретное утверждение «Дворецкий является убийцей» из более общих сведений «Убийца-блондин», а «Дворецкий является единственным блондином, которого можно подозревать».

Вторая модель – это индуктивный вывод, который является противоположностью дедуктивному выводу. Индуктивная логика извлекает общие заключения из отдельных случаев. Например, индуктивный вывод может быть использован, чтобы обосновать общее заключение «солнце поднимается на востоке» на основании многих отдельных наблюдений того, что солнце всегда поднималось на востоке.

Эти два процесса вывода умозаключений – дедукция (от общего к частному) и индукция (от частного к общему) – тесно связаны с двумя наиболее широко распространенными методами проектирования: «сверху вниз» и «снизу вверх». Подобно дедукции, проектирование «сверху вниз» начинается с большой задачи, которая разбивается на подзадачи. Например, проектировщик нового холодильника-морозильника на основании исходного множества спецификаций агрегата (т.е. постановки задачи) должен дать детальные схемы и спецификации окончательного продукта (т.е. проект).

Если при этом он использует метод проектирования «сверху вниз», то единственная задача проектирования может быть разбита на две меньшие подзадачи: (1) проектирование холодильного агрегата и (2) проектирование морозильника.

Однако можно воспользоваться методом проектирования «снизу вверх» и начать с проектирования холодильного компрессора, а затем охлаждающих труб, агрегата или холодильной камеры. В таком случае этот выбор будет налагать определенные ограничения на весь проект.

Задача проектировщика – создание алгоритма, выполняющего функции связующего звена между постановкой задачи и готовой для исполнения программой. Проверку созданного алгоритма, т. е. насколько последний отражает постановку задачи, осуществляет системный аналитик. В силу этого и системный аналитик, и проектировщик должны уметь читать и понимать алгоритм. Каждый алгоритм записывается на некотором псевдоязыке. Алгоритмы, называемые также псевдокодами, не могут быть выполнены ни на каком компьютере.

Работа кодировщика заключается в переводе алгоритма в программу. Для создания полной, точной и понятной программы необходимы соответствующие методы записи программ. Например, кулинарные рецепты обычно записываются на естественных языках, таких, как английский, французский, русский или японский. Программы же пишутся на языках программирования. В настоящее время ни один из естественных языков нельзя использовать в качестве языка программирования, так как они чересчур сложны, чтобы их могли «понимать» машины. В отличие от естественных, языки программирования созданы специально для такого представления решения задачи, которое может быть выполнено компьютером.

Прежде чем завершить работу, кодировщик должен убедиться, что программа соответствует псевдокоду. Затем системный аналитик, алгоритмист и, что самое главное, пользователь должны протестировать и подтвердить, что она работает правильно. После этого можно считать, что программа готова для передачи пользователю в комплекте со всей необходимой документацией.

Однако на этом программирование не заканчивается; далее следует шаг сопровождения. Дело в том, что в программе могут быть ошибки, обусловленные либо неадекватной постановкой задачи, либо тем, что проект не удовлетворяет постановке задачи или программа не соответствует проекту. Какова бы ни была причина, пользователь вправе потребовать корректировки программы, поскольку он не представлял, что программа будет работать таким образом. Исправление ошибок является одной из главных задач сопровождения программ. Другой не менее важной задачей сопровождения программ является ее модификация, т. е. добавление в программу новых возможностей или изменение существующих. Пользователь может изменить требования к работе программы, что, в свою очередь, приведет к необходимости ее переписать. Сложность операций по сопровождению программы зависит от типа изменений, которые должны быть сделаны: в худшем случае может потребоваться полная переработка программы от постановки до кодирования. Обычно на сопровождение программы затрачивается большее время, чем на ее создание.

Последней составляющей процесса программирования является документирование. Оно включает широкий спектр описаний, облегчающих процесс программирования и обогащающих результирующую программу. Постоянное документирование должно составлять неотъемлемую часть каждого шага программирования. Постановка задачи, проектные документы, алгоритмы и программы – все это документы. Внутренняя документация, включенная непосредственно в программу, облегчает чтение кода. Назначение учебного пособия (еще одной формы документации) – научить пользователя применять новую программу; справочное руководство позволяет ознакомиться с описанием команд программного обеспечения.

Вывод к п.1.1.

Согласно модели, представленной в данной главе, программирование можно разделить на четыре шага: постановку задачи, проектирование решений, кодирование программы, сопровождение программы. Дополнительно модель включает документирование программы как действия, которые необходимо выполнять в течение всего процесса программирования.

Модель программирования построена специально для решения больших проблем, так как именно они представляют интерес для специалистов в области информатики. Тем не менее, на практике важно использовать тщательно выбранные инженерные методики проектирования программ независимо от размера задач: навыки, приобретенные в процессе решения более мелких задач, могут быть закреплены и успешно реализованы при решении больших задач.

определения;

реализации;

обслуживания.

1.2.1 Определение системы

Процесс создания ПО начинается с практических изысканий, ведущих к системному анализу, задача которого состоит в определении общих требований к системе и программам. Такой анализ должен, прежде всего, установить реальные потребности и цели и по возможности выявить имеющиеся методы, позволяющие достичь поставленной цели. При необходимости анализ может основываться на математических или иных формальных схемах. Считается, что при любом подходе указанный анализ должен иметь определенную структуру и проводиться в соответствии с некоторой теорией. Анализ и внесение уточнений, осуществляемые совместно с аналитиками и потенциальными пользователями, должны привести к выработке окончательной спецификации требований.

Процесс составления такой спецификации имеет целью получение правильного технического задания, полного в смысле отражения требований и согласованного с определением реализации. За составлением спецификаций следует фаза проектирования, смысл которой состоит в идентификации и структуризации данных, их преобразовании и организации их передачи. Кроме того, на этой фазе необходимо добиться в определенном смысле оптимального распределения функции системы, выбрать алгоритм и процедуры, а также обозначить системные компоненты и связь между ними.

Завершив проектирование можно начинать реализацию системы. Однако на практике фаза проектирования и реализации перекрываются. Таким образом, по мере осуществления иерархического процесса разбиения анализ некоторых элементов системы может быть признан достаточно полным для перехода к реализации, в то время как другие элементы требуют дальнейшего уточнения.

В ходе процесса реализации необходимо устанавливать правильность программы. Современные процедуры большей частью основаны на тестировании, хотя в последние годы расширилось использование методов сквозного структурного контроля и аттестации программ.

В любом случае, тестирование посредством исполнения программы обычно осуществляется снизу вверх, в начале на блочном (модульном или процедурном уровне), затем функционально, компонент за компонентом. По мере проверки отдельных компонентов они объединяются в систему в процессе ее компоновки, после чего начинаются системные испытания. В конечном итоге, после того как независимо будет удостоверено качество функционирования системы и оценены ее параметры, она считается готовой к выпуску.

1.2.3 Обслуживание

Процесс обслуживания начинается сразу после выпуска системы. Ошибки подлежат выявлению и исправлению. Если нормальной работе пользователя препятствует ошибка, то ошибочную программу можно временно исключить из системы или же внести временные или постоянные исправления в некоторые или во все используемые системы. Постоянное исправление или изменение можно затем внести в новый выпуск системы. Для того чтобы учесть все изменения и их комбинации, создаются многочисленные версии системных элементов. Главной задачей становится управление системной конфигурацией. Решающая роль в управлении программирования принадлежит вспомогательным службам, которые автоматически собирают и регулируют все изменения в системе.

Вывод к п.1.2.

Метасистема, в рамках которой развивается программа, содержит существенно большее количество контуров обратной связи, чем указано выше. Многие виды деятельности перекрываются, сложным образом переплетаются и систематически повторяются. Поэтому достаточно обоснована модель ЖЦПО представленная Боэмом.

1.3 Фазы и работы ЖЦПО по Боэму

Каскадная модель была введена в 70 – 80 гг. Она удобна для однородных ПП, когда каждое приложение представляло собой единое целое.

Основные характеристики модели:

Жизненный цикл разбивается на этапы (фазы);

Переход с этапа на этап – только после полного завершения текущего этапа;

Этап завершается выпуском полного комплекта документации, достаточной для того, чтобы работа могла быть выполнена другой командой разработчиков.

Главные характерные черты каскадной модели следующие:

завершение каждой фазы верификацией и подтверждением, цель которых – устранить возможно большее число проблем, связанных с разработкой изделия;

циклические повторения реализованных фаз с возможно более ранней фазы.

Рис.2. Каскадная модель ЖЦПО.

В каскадной модели успешное окончание одной из фаз ЖЦПО означает достижение соответствующей цели инженерного программирования (см. п. 2.4.). К этим подцелям необходимо добавить еще две:

Детальная проектируемость – получение полных верифицированных спецификаций и структур управления и данных, интерфейсных связей, характеристик, основных алгоритмов и определение условий работы каждого программного компонента.

Кодируемость – получение полного, верифицированного набора компонентов программы.

Основные достоинства:

Формирование полного набора проектной документации в конце работы над этапом. Документация отвечает критериям полноты и завершенности;

Возможность планирования сроков и затрат. Для целого ряда ПП эта модель реализуема – это для систем, для которых на этапе анализа можно точно и полно сформировать все требования. Например, сложные вычислительные программы.

Основные недостатки:

Большие сроки от анализа до завершения;

Требования к ПО «заморожены» в виде ТЗ до конца разработки.

1.3.2 Экономическое обоснование каскадной модели

Не углубляясь в экономический анализ, которому Б.У. Боэм уделяет большое внимание в книге «Инженерное проектирование программного обеспечения», скажем лишь, что экономическое обоснование каскадной модели, ориентированной на последовательное достижение целей, базируется на двух главных предпосылках:

Для получения качественного программного изделия (т.е. такого, которое в полной мере удовлетворяет всем целям требуемого программного изделия) необходимо в любом случае осуществить все подцели на каждом этапе.

Любое другое упорядочение подцелей приводит к созданию менее качественного программного изделия.

1.3.3 Усовершенствование каскадной модели

Рассмотрим одно из усовершенствований идеальной каскадной модели – пошаговую разработку.

Пошаговая разработка является усовершенствованием метода повторной разработки с созданием прототипа и поуровневой разработкой сверху – вниз. Этот метод предполагает пошаговое увеличение функциональных возможностей ПО в процессе разработки.

В качестве усовершенствованной каскадной модели пошаговая разработка успешно применялась при создании как очень больших, так и небольших программных изделий.

Главными преимуществами пошаговой разработки перед абсолютно повторной разработкой и поуровневой разработкой сверху – вниз являются следующие:

использование последовательных расширений программы обеспечивает гораздо менее дорогой способ учета в усовершенствованном изделии опыта пользователей, чем при повторной разработке;

расширение функциональных возможностей намного упрощает проверку и полезнее, чем промежуточные изделия при поуровневой разработке.

Значение пошаговой разработки заключается главным образом в изменении распределения затрат труда на проект. Вариант каскадной модели при пошаговой разработке показан на рисунке 3.

1.3.4 Определение фаз жизненного цикла

Ниже будут даны формулировки конечных целей каждой фазы для перехода к следующей фазе. Для пошаговой разработки приводимые формулировки относятся к границам фаз каждого шага расширения.

Начать фазу планирования и анализа требований. (Завершение концептуального обзора ЖЦПО.)

Получение одобренной и подтвержденной архитектуры системы с включением основных соглашений о распределении функций между аппаратурой и программами. Получение одобренного и подтвержденного общего представления об функционировании ПО с включением основных соглашений о распределении функций между человеком и системой.

Формирование общего плана ЖЦПО с определением основных этапов, ресурсов, обязанностей, сроков и главных работ.

Завершить фазу планирования и анализа требований. Начать фазу проектирования изделия. (Завершение обзора требований к ПО).

Формирование детального плана разработки: детальных показателей завершения этапов разработки, планов распределения ресурсов, схем организационной структуры, обязанностей, сроков, работ, методов и изделий.

Формирование детального плана использования: пунктов плана разработки, содержание которых ориентировано на обучение, перенос программ, внедрение, эксплуатацию и поддержание.

Формирование детального плана отладки изделия – план управления конфигурацией технического обеспечения, план контроля качества, общий план верификации и подтверждения.

Одобренная и подтвержденная спецификация требований к ПО: функциональные, технические и интерфейсные спецификации, для которых подтверждены их полнота, непротиворечивость, проверяемость и осуществимость.

Одобренный (формально или неформально) договор на разработку, основанный на приведенных выше пунктах.

Закончить фазу проектирования изделия. Начать фазу детального проектирования. (Завершение анализа результатов проектирования изделия.)

Разработка верифицированной спецификации проекта программного изделия:

формирование иерархии программных компонентов, межблочных интерфейсов по данным и управлению;

формирование физической и логической структур данных до уровня отдельных полей;

разработка плана распределения вычислительных ресурсов (времени, памяти, точности);

верификация полноты, непротиворечивости, осуществимости и обоснованности требований.

Установление и разрешение всех противоречий разработки, которые повышают степень риска.

Разработка предварительного этапа комплексирования и отладки, плана руководства для пользователей и приемных испытаний.

Закончить фазу детального проектирования. Начать фазу кодирования и автономной отладки. (Завершение сквозного контроля проекта или критического поблочного анализа проекта.)

Верифицированная детальная спецификация каждого блока:

спецификация каждой подпрограммы, имени, назначения, предположений, размеров, последовательности вызовов, ошибочных выходов, входных и выходных данных, алгоритмов и логической схемы;

описание базы данных до уровня отдельных параметров, символов и битов;

верификация полноты, непротиворечивости и соответствия требованиям проектных спецификаций системы и планам распределения ресурсов.

Одобренный план приемных испытаний.

Руководства пользователю, а также завершенный предварительный план комплексирования и отладки.

Закончить фазу копирования и отладки. Начать фазу комплексирования и отладки. (Удовлетворение критериев автономной отладки.)

Проверка работы всех блоков не только для номинальных, но также для исключительных и предельных значений.

Проверка всех вариантов ввода и вывода, включая сообщения об ошибках.

Выполнение всех операторов и всех ветвей передачи управления.

Проверка выполнения стандартов программирования.

Завершение поблочного документирования внутренней структуры.

Закончить фазу комплексирования и испытаний. Начать фазу внедрения. (Завершение анализа результатов приемных испытаний.)

Проверка удовлетворения тесту приемных испытаний программ:

проверка удовлетворения требованиям к ПО;

демонстрация приемлемости указанных в спецификациях характеристик работы в нештатных условиях.

Приёмка поставляемых программных изделий, отчетов, руководств, баз данных, спецификаций внутренней структуры.

Закончить фазу внедрения. Начать фазу эксплуатации и сопровождения. (Завершение анализа приемки системы.)

Проверка удовлетворительности результатов приемных испытаний системы.

Проверка удовлетворительности системных требований.

Проверка производственной готовности ПО, аппаратуры, средств обслуживания и персонала.

Приёмка поставляемых и входящих в систему изделий: аппаратуры, ПО, документации, средств обучения и обслуживания.

Завершение всех специфицированных работ и ввод системы в действие.

Закончить фазу эксплуатации и сопровождения (путем снятия с производства).

Выполнение всех пунктов плана снятия с производства: перенос программ, документирование, создание архива, переход к новой системе.

1.3.5 Основные работы над проектом

Анализ требований.

Проектирование изделия.

Программирование.

Планирование отладки.

Верификация и подтверждение.

Управление проектом.

Управление конфигурацией и контроль качества.

Итак, были рассмотрены три подхода к определению жизненного цикла ПО. На мой взгляд, все они имеют право на существование, так как в той или иной степени отражают практику программирования. Тем более, что легко можно обнаружить общие моменты (ставится задача – определяется система – анализируются требования; сопровождение программы – обслуживание – эксплуатация и сопровождение).

Однако, надо заметить, что определение фаз и работ ЖЦПО Боэма наиболее обоснованно, т.к. опирается на более ориентированный подход в инженерном программировании (направленный на получение качественного программного изделия и реализацию эффективного процесса разработки и сопровождения ПО) и обосновывается экономически.

Исходя из данного отчета видно как важно и необходимо знать потребности современного мира при составлении программного продукта (изделия). Важно при составлении программы для автоматизации, какой либо системы, учитывать то, что современный мир постоянно меняется, а значит должна быть способной к изменению и программа.

Важно так же, при составлении программы, учитывать то, что программа должна быть точной; полной по своему содержанию и пригодной для работы как с маленькими, так и с большими проблемами в соответствии со своим предназначением; ясной - для того чтобы пользователь мог спокойно, без затруднений работать с ней. А так же чтобы программу в любой момент можно было бы легко исправить или дополнить в соответствии с изменившимися требованиями в современном мире.

Следует помнить, что хорошее программирование – это не кодирование быстро найденного решения с помощью любой подходящей методики, а тщательно инструментированная инженерная процедура, позволяющая создать полное, точное и легко понимаемое (ясное) программное обеспечение.


1. Б.У. Боэм «Инженерное проектирование программного обеспечения». М.: Радио и связь. 1985.

2. Д.Райли. «Использование языка Модула-2». М.: Мир. 1993.

3. Ю.В. Иванов «Программы и их жизненные циклы» (реферат по дисциплине «Метрология ПО»). 1998.

Жизненный цикл – это модель создания и использования программной системы. Он отражает различные состояния программной системы, начиная с момента возникновения необходимости в этой программной системе и принятия решения о ее создании и заканчивая полным изъятием программной системы из эксплуатации.

Международный стандарт ISOIES 12207 регламентирует структуру жизненного цикла, содержащую процессы, действия и задачи, которые должны быть выполнены во время создания программного обеспечения. По этому стандарту жизненный цикл программного обеспечения базируется на трех группах процессов:

    основные процессы жизненного цикла, то есть приобретение, поставка, разработка, эксплуатация и сопровождение;

    вспомогательные процессы, обеспечивающие выполнение основных процессов, то есть документирование, верификация, аттестация, оценка качества и другие;

    организационные процессы, то есть управление проектами, создание инфраструктуры проекта и обучение.

Разработка включает в себя все работы по созданию программного обеспечения в соответствии с заданными требованиями. Сюда включаются оформление проектной и эксплуатационной документации, подготовка материалов, необходимых для проверки работоспособности и качества программных продуктов.

Основные этапы процесса разработки:

    анализ требований заказчика;

    проектирование;

    реализация (программирование).

Процесс эксплуатации включает в себя работы по внедрению программного обеспечения в эксплуатацию, в том числе конфигурирование рабочих мест, обучение персонала, локализация проблем эксплуатации и устранение причин их возникновения, модификация программного обеспечения в рамках установленного регламента и подготовка предложений по модернизации системы.

Каждый процесс характеризуется определенными задачами и методами их решения, а также исходными данными и результатами.

Жизненный цикл программного обеспечения носит, как правило, итерационный характер, то есть реализуются этапы, начиная с самых ранних, которые циклически повторяются в соответствии с изменением требований внешних условий и введением ограничений.

Модели жизненного цикла программного обеспечения

Существует несколько моделей жизненного цикла, которые определяют порядок исполнения этапов разработки и критерии перехода от этапа к этапу. К настоящему времени наибольшее распространение получили две модели жизненного цикла: каскадная и спиральная .

В существующих ранее однородных информационных системах каждое приложение представляло собой единое целое. Для разработки таких приложений применялась каскадная модель жизненного цикла, которую также называют классической или водопадной .

При использовании каскадной модели разработка рассматривалась как последовательность этапов, причем переход на следующий более низкий этап происходит только после того, как полностью завершены все работы на текущем этапе. Подразумевается, что в каскадной модели разработка начинается на системном уровне и происходит через анализ, проектирование, кодирование, тестирование и сопровождение.

Рисунок 1– Основные этапы разработки каскадной модели

1. Системный анализ задает роль каждого элемента в компьютерной системе и взаимодействие элементов друг с другом. Поскольку программное обеспечение рассматривается как часть большой системы, то анализ начинается с определения требований по всем системным элементам. Необходимость системного анализа явно проявляется, когда формируется интерфейс программного обеспечения с другими элементами, т.е. с аппаратурой или базами данных. На этом же этапе начинается решение задач планирования проекта. В ходе планирования проекта определяется объем проектных работ и их риск, необходимые трудозатраты, формируются рабочие задачи и план-график работ.

Анализ требований относится к отдельному программному элементу. На этом этапе уточняются и детализируются функции каждого элемента, его характеристики и интерфейс. На этом же этапе завершается решение задачи планирования проекта.

2. Проектирование состоит в создании:

    архитектуры программного обеспечения;

    модульной структуры программного обеспечения;

    алгоритмической структуры программного обеспечения;

    структуры данных;

    входного/выходного интерфейса (входных/выходных форм данных).

При решении задач проектирования основное внимание уделяется качеству будущего программного продукта.

3. Кодирование или разработка состоит в переводе результатов проектирования в код программы.

4. Тестирование – это выполнение программы на выявление дефектов в функциях, логике и форме реализации программного продукта.

5. Сопровождение – это внесение изменений в эксплуатируемое программное обеспечение с целью:

    исправления ошибок;

    адаптации к изменениям внешней для программного обеспечения среды;

    усовершенствование программного обеспечения в соответствии с требованиями заказчика.

Достоинства применения каскадной модели:

    дает план и временной график по всем этапам проекта, упорядочивая, таким образом, ход разработки;

    на каждом этапе формируется законченный набор проектной документации, проверенный на полноту и согласованность;

    выполняемые в логической последовательности этапы работы позволяют планировать сроки завершения всех работ и соответствующие затраты.

Каскадная модель хорошо себя зарекомендовала при построении информационных систем, для которых в самом начале разработки можно достаточно точно сформулировать все требования в системе, например, сложные расчетные системы, различные системы реального времени и т.д.

Недостатки каскадной модели:

    реальные проекты часто требуют отклонений от стандартной последовательности шагов;

    каскадная модель основана на точной формулировке исходных требований к программному обеспечению, однако реально в ряде случаев в начале проекта требования заказчика определены только частично;

    результаты реализации проекта доступны заказчику только после завершения всех работ.

Из-за необходимости в процессе создания программного обеспечения постоянного возврата к предыдущим этапам и уточнения или пересмотра ранее принятых решений реальный процесс разработки программного обеспечения на основе каскадной модели может быть представлен следующей схемой (рис.2).

Рисунок 2 – Процесс разработки программного обеспечения на основе каскадной модели

ПО – комплекс программ, предназначенный для решения задачи. Жизненный цикл ПО – отрезок времени от момента возникновения необходимости в создании ПО до момента снятия его с эксплуатации. Стадии жизненного цикла ПО, которые могут протекать как последовательно, так и пераллельно, так и квазипараллельно:

1. разработка;

2. эксплуатация;

3. сопровождение.

На фазе сопровождения, как правило, выполняются следующие виды работ:

  1. расширение функциональных возможностей ПО;
  2. модификация уже существующих функций;
  3. модификация ПО, связанная с модификацией аппаратного обеспечения;
  4. устранение ошибок ПО, которые небыли обнаружены при разработке в виду невозможности полного тестирования, а проявились только на фазе эксплуатации.

При проведении разработки чётко выделяют следующие этапы:

  1. определение требований к ПО, которое предусматривает сбор необходимой информации.
  2. внешнее проектирование (информация, содержащаяся в техническом задании, подвергается анализу и строгой формализации; основное назначение этого этапа – дать разработчику наиболее полное и точное представление о том, что должно в конечном итоге получиться). Не является обязательным.
  3. внутреннее проектирование (уточняются те сведения, полученные на предыдущих этапах, и вырабатываются структуры данных, используемые в ПО, определяется модульная структура ПО, правила взаимодействия модулей в процессе передачи управления или обмена информацией и т.д.).
  4. программирование (кодирование).
  5. тестирование и отладка. Тестирование – процесс выявления факта наличия ошибок в программе. Отладка – тестирование + диагностика и локализация ошибок + устранение ошибок.
  6. испытание ПО. Испытание – особый вид тестирования, цель которого выявление несоответствий между полученным ПО и требованиями технического задания.

Модели жизненного цикла ПО:

§ каскадная модель

§ спиральная модель – при прохождении одного витка спирали результатом является версия ПО. После испытаний принимается решение о разработки следующей версии, либо неразработки, если данная версия удовлетворяет требованиям технического задания полностью.

31. Техническое задание (ГОСТ 19.201 – 78). Его основные разделы и их содержание.

В соответствии с этим стандартом в техническое задание включаются следующие разделы:



2. введение;

3. основание для разработки;

4. назначение разработки;

5. требования к программному изделию;

6. требования к документации;

7. технико-экономические показатели;

8. стадии и этапы разработки;

9. порядок контроля и приёмки

10. приложение.

Введение:

§ наименование;

§ краткая характеристика в области применения ПО.

Основное назначение этого раздела – продемонстрировать актуальность данной разработки и какое место эта разработка занимает в ряду подобных.

Основание для разработки:

§ наименование документа, на основании которого ведётся разработка;

§ организация, утвердившая данный документ;

§ наименование или условное обозначение темы разработки.

Таким документом может служить план, приказ, договор и т.д.

Назначение разработки:

§ описание функционального и эксплуатационного назначения данной системы с указанием категории её пользователей.

Требования к программе или к программному изделию.

Этот раздел должен включать следующие подразделы:

1. требования к функциональным характеристикам;

2. требования к надёжности;



3. условия эксплуатации;

4. требования к составу и параметрам технических средств;

5. требования к информационной и программной совместимости;

6. требования к маркировке и упаковке;

7. требования к транспортированию и хранению.

8. специальные требования.

В разделе требований к функциональным характеристикам должны быть перечислены все функции и описаны состав, характеристики и формы представления исходных данных и результатов. В этом же разделе при необходимости указывают критерии эффективности (максимальное время ответа системы, максимальный объём используемой памяти).

В разделе требования к надёжности должен быть указан уровень надёжности ПО, который должен быть обеспечен при разработке. В системах с обычными требованиями надёжности, т.е. не относящихся к системам в которых существует риск жизни людей, дополнительно указывают действия разработки системы, направленные на увеличение надёжности системы (создание резервных копий, блокировка опасных действий).

В разделе условия эксплуатации указывают особые требования к условиям эксплуатации ПО (температура, влажность). Такие требования необходимы, когда ПО будет работать (эксплуатироваться) в условиях, отличных от центра разработки. Если условия не отличаются, дополнительно указывают, что требования не предъявляются или же вообще опускают этот раздел. В этом разделе иногда указывают виды требуемого обслуживания, квалификацию обслуживающего персонала.

В разделе требования к составу и параметрам технических средств указывают необходимый состав и основные характеристики технических средств. В этом разделе обычно указывают две конфигурации технических средств: минимальные и номинальные.

В разделе требования к информационной и программной совместимости при необходимости можно задать методы программирования, среду разработки и используемую операционную систему. Если предполагается, что ПО будет эксплуатироваться с другими ПО, то в этом разделе следует привести перечень этих ПО и подробно описать интерфейс взаимодействия на уровне форматов данных и API-функций.

В разделе требования к маркировке и упаковке указываются способы маркировки и упаковки ПО.

В разделе требования к транспортированию и хранению указываются условия транспортирования, места хранения, условия складирования и сроки хранения в различных условиях.

В разделе специальных требований указываются требования, не относящиеся ни к одному из ранее описанных разделов.

Требования к программной документации.

В этом разделе приводят перечень программной и эксплуатационной документации, которая должна быть разработана вместе с программным изделием. При необходимости в нём указываются специальные требования к структуре и составу документов. Минимальный объём документации: руководство пользователя.

Технико-экономические показатели.

Стадии и этапы разработки.

В нём указывают стадии и этапы разработки выполняемых работ с указанием сроков и исполнителей.

Порядок контроля и приёмки.

В нём указывают порядок проведения испытаний и общие требования по проведению приёмки.

Приложение: перечень НИР, обоснования, расчёты, и другие документы, которые следует использовать для разработки.

В зависимости от особенностей разрабатываемого ПО разрешается уточнять описанные разделы, вводить новые или объединять существующие.

32. Структурное проектирование ПО: метод структурного анализа, проектирование модульной структуры.

Метод структурного анализа базируется на ряде общих принципов, перечисленных ниже.

1. Принцип декомпозиции и иерархического упорядочивания , который заключается в разбиении большой и сложной проблемы на множество меньших независимых подзадач, легких для понимания и решения. Причем декомпозиция может осуществляться и для уже выделенных подзадач. В результате такой последовательной декомпозиции специфицируемая система может быть понята и построена по уровням иерархии, каждый из которых добавляет новые детали.

2. Принцип абстрагирования заключается в выделении существенных с некоторых позиций аспектов системы и отвлечения от несуществующих с целью представления проблемы в удобном общем виде.

3. Принцип формализации заключается в необходимости строгого методологического подхода и решению проблемы.

4. Принцип сокрытия заключается в "упрятывании" несущественной на определенном этапе информации: каждая часть "знает" только то, что необходимо.

5. Принцип полноты заключается в контроле на присутствие лишних элементов.

6. Принцип непротиворечивости заключается в обоснованности и согласованности элементов.

7. Принцип логической независимости заключается в концентрации внимания на логическом проектировании для обеспечения независимости от физического исполнения.

8. Принцип независимости данных заключается в том, что модели данных должны быть проанализированы и спроектированы независимо от процессов их логической обработки, а также от их физической структуры и распределения в памяти вычислительной системы.

9. Принцип структурирования данных заключается в том, что данные должны быть структурированы и иерархически организованы.

Руководствуясь всеми принципами в комплексе, можно на этапе специфицирования понять, что будет представлять из себя разрабатываемое программное обеспечение, обнаружить промахи и недоработки, что, в свою очередь, облегчит работы на последующих этапах жизненного цикла.

Для целей специфицирования систем в структурном анализе используются три группы средств, иллюстрирующих:

* функции, которые система должна выполнять;

* отношения между данными;

* зависящее от времени поведение системы (аспекты реального времени).

Для этого применяются:

* DFD (Data Flow Diagrams) – диаграммы потоков данных совместно со словарями данных и спецификациями процессов;

* ERD (Entity–Relationship Diagrams) – диаграммы сущность–связь;

* STD (State Transition Diagrams) – диаграммы переходов–состояний.

DFD показывает внешние по отношению к системе источники и приемники данных, идентифицирует логические функции (процессы) и группы элементов данных, связывающие одну функцию с другой (потоки), а также идентифицирует хранилища (накопители данных), к которым осуществляется доступ. Структуры потоков данных и определение их компонентов хранятся в словаре данных. Каждая логическая функция может быть детализирована DFD нижнего уровня. Когда детализация исчерпана, переходят к описанию логики с помощью спецификации процесса.

Структура каждого хранилища описывается с помощью ERD. В случае наличия реального времени DFD дополняется средствами описания, зависящего от времени поведения системы, которые описываются с помощью STD. Эти связи показаны на рисунке.

Взаимосвязь средств структурного анализа

Проектирование модульной структуры. Модуль – это отдельная функционально законченная программная единица, которая может применяться самостоятельно, либо быть частью программы. Программное обеспечение создается на основе модульной структуры, состоящей из отдельных модулей.

К преимуществам разработки ПО с использованием модулей можно отнести следующее:

  1. Упрощается проектирование ПО, так как сложную и большую про­блему легче понять, разбив се на отдельные функциональные части.
  2. Обеспечивается возможность организации совместной работы больших коллективов разработчиков, так как каждый программист имеет дело с независимой от других частью ПО - модулем или группой модулей.
  3. Упрощается отладка программ, так как ограниченный доступ к мо­дулю и однозначность его внешнего поведения исключает влияние ошибок в других модулях на его функционирование.
  4. Повышается надежность программ, так как относительно малый размер модулей и, как следствие, небольшая их сложность, позволяют про­вести более полную их проверку.

Для проектирования и документирования модульной структуры применяются структурные карты Константайна (Constantine), которые являются моделью отношений между программными модулями.

Структурная карта представляет собой ориентированный граф. Узлы структурных карт соответствуют модулям и областям данных, а дуги изображают межмодульные вызовы. При этом циклические и условные вызовы моделируются специальными узлами, привязанными к дугам.

Элементы структурных карт.

Базовым элементом структурной карты является модуль. Можно выделить различные типы модулей:

1. Собственно модуль используется для представления обрабатывающего фрагмента ПО и для локализации его на диаграмме.

2. Подсистема – совокупность ранее определенных модулей. Может повторно использоваться любое число раз на любых диаграммах.

3. Библиотека отличается от подсистемы тем, что определена вне контекста системы.

4. Область данных используется для указания модулей, содержащих области глобальных (распределенных) переменных.

Типы модулей на структурных картах.

При построении структурных карт добавление модулей и увязывание их вместе осуществляется с использованием потоков, демонстрирующих иерархию вызовов. Различают последовательный и параллельный вызовы. При последовательном вызове модули могут вызываться в любом порядке или одновременно.

Для моделирования условных и циклических вызовов применяются условные и итерационные узлы.

Изображения условного и итерационного вызовов.

Типовые модульные структуры. В зависимости от задач, решаемых разработчиком, и от выбранного метода проектирования модульное ПО может иметь одну из следующих основных структур: монолитно - модульную; последовательно - модульную; модульно - иерархическую; модульно - хаотическую.

а - монолитная; б - последо­вательная; в - иерархическая; г – хаотическая.

Монолитно - модульная структура включает в себя большой про­граммный модуль, реализующий большую часть возложенных на програм­му функций. Из этой части имеется незначительное число обращений к другим программным модулям значительно меньшего размера. Такая структура несет на себе все недостатки немодульного принципа программи­рования: она сложна для понимания, проверки и сопровождения.

Последовательно - модульная структура включает в себя несколько по­следовательно передающих друг другу управление модулей. Эта структура проста и наглядна, но может быть реализована лишь для относительно про­стых задач.

Модульно - иерархическая структура включает в себя программные модули, располагаемые на разных уровнях иерархии. Модули верхних уровней управляют работой модулей нижних уровней. Подобная структура наиболее предпочтительна и позволяет строить достаточно сложные про­граммы.

Модульно - хаотические структуры. Такие программы сложны для проверки и сопровождения. Эта структура допустима только в системах реального времени с жесткими объемно-временными характеристиками, когда с помощью программ с другой структурой невозможно их достичь.

Общие правила структурного построения ПО. На начальных этапах разработки ПО формируется его структура и об­щие правила взаимодействия компонентов, которые состоят в следующем:

  • должна быть унифицирована структура ПО и правила оформления описания каждого программного модуля;
  • каждый модуль характеризуется функциональной законченностью, автономностью и независимостью в оформлении от модулей, которые ею используют и которые он вызывает;
  • применяются стандартные правила организации связей модуля по управлению и информации (данным) с другими модулями;
  • ПО разрабатываются в виде совокупности небольших по количеству операторов (до 100) программных модулей, связанных иерархическим обра­зом;
  • должен отсутствовать эффект после действия очередного исполнения программы на последующие исполнения;
  • регламентировано использование локальных переменных и регистров ЭВМ.

Аннотация.

Введение.

1. Жизненный цикл ПО

Введение.

Шаги процесса программирования по Райли

Введение.

1.1.1. Постановка задачи.

1.1.2. Проектирование решения.

1.1.3. Кодирование алгоритма.

1.1.4. Сопровождение программы.

1.1.5. Программная документация.

Вывод к п. 1.1

1.2. Определение ЖЦПО по Леману.

Введение.

1.2.1 Определение системы.

1.2.2. Реализация.

1.2.3. Обслуживание.

Вывод к п. 1.2.

1.3. Фазы и работы ЖЦПО по Боэму

1.3.1. Каскадная модель.

1.3.2. Экономическое обоснование каскадной модели.

1.3.3. Усовершенствование каскадной модели.

1.3.4. Определение фаз жизненного цикла.

1.3.5. Основные работы над проектом.

Литература.


Введение

Промышленное применение компьютеров и растущий спрос на программы поставили актуальные задачи существенного повышения производительности разработки ПО , разработки индустриальных методов планирования и проектирования программ, переноса организационно-технических, технико-экономических и социально-психологических приемов, закономерностей и методов из сферы материального производства в сферу применения компьютеров. Комплексный подход к процессам разработки, эксплуатации и сопровождения ПО выдвинул ряд насущных проблем, решение которых исключит «узкие места» в проектировании программ, уменьшит сроки завершения работ, улучшит выбор и адаптацию существующих программ, а может быть и определит судьбу систем со встроенными ЭВМ.

В практике разработок больших программных проектов зачастую отсутствует единый подход к оцениванию затрат труда, сроков проведения работ и материальных затрат, что сдерживает повышение производительности разработки ПО, а в конечном счете – эффективное управление жизненным циклом ПО. Поскольку программа любого типа становится изделием (кроме, может быть, учебных, макетных программ), подход к ее изготовлению во многом должен быть аналогичен подходу к производству промышленной продукции, и вопросы проектирования программ становятся чрезвычайно важными. Эта идея лежит в основе книги Б.У. Боэма «Инженерное проектирование программного обеспечения», которую мы использовали при написании данной курсовой работы. В этой книге под проектированием ПО понимается процесс создания проекта программного изделия.


1 Жизненный цикл ПО

ВВЕДЕНИЕ

ЖЦПО – это непрерывный процесс, который начинается с момента принятия решения о необходимости создания ПО и заканчивается в момент его полного изъятия из эксплуатации.

Существует несколько подходов при определении фаз и работ жизненного цикла программного обеспечения (ЖЦПО), шагов процесса программирования, каскадная и спиральная модели. Но все они содержат общие основополагающие компоненты: постановка задачи, проектирование решения, реализация, обслуживание.

Наиболее известной и полной, пожалуй, является структура ЖЦПО по Боэму, включающая восемь фаз. Она и будет представлена в дальнейшем наиболее подробно.

Одним из возможных вариантов может послужить описание верхнего уровня по Леману, включающее три основные фазы и представляющее описание ЖЦПО в самом общем случае.

И, для разнообразия, – приведем шаги процесса программирования, представленные Д.Райли в книге «Использование языка Модула-2». Это представление, по-моему, является весьма простым и привычным, с него и начнём.

1.1 Шаги процесса программирования по Райли

Процесс программирования включает четыре шага (рис. 1):

постановка задачи, т.е. получение адекватного представления о том, какую задачу должна выполнить программа;

проектирование решения уже поставленной задачи (в общем, такое решение является менее формальным, чем окончательная программа);

кодирование программы, т. е. перевод спроектированного решения в программу, которая может быть выполнена на машине;

сопровождение программы, т.е. непрекращающийся процесс устранения в программе неполадок и добавления новых возможностей.

Рис. 1.Четыре шага программирования.

Программирование начинается с того момента, когда пользователь , т.е. тот, кто нуждается в программе для решения задачи, излагает проблему системному аналитику. Пользователь и системный аналитик совместно определяют постановку задачи. Последняя затем передается алгоритмисту , который отвечает за проектирование решения. Решение (или алгоритм) представляет последовательность операций, выполнение которых приводит к решению задачи. Поскольку алгоритм часто не приспособлен к выполнению на машине, его следует перевести в машинную программу. Эта операция выполняется кодировщиком. За последующие изменения в программе несет ответственность сопровождающийпрограммист. И системный аналитик, и алгоритмист, и кодировщик, и сопровождающий программист – все они являются программистами.

В случае большого программного проекта число пользователей, системных аналитиков и алгоритмистов может оказаться значительным. Кроме того, может возникнуть необходимость вернуться к предшествующим шагам в силу непредвиденных обстоятельств. Все это служит дополнительным аргументом в пользу тщательного проектирования программного обеспечения: результаты каждого шага должны быть полными, точными и понятными.

1.1.1 Постановка задачи

Одним из наиболее важных шагов программирования является постановка задачи. Она выполняет функции контракта между пользователем и программистом (программистами). Как и юридически плохо составленный контракт, плохая постановка задачи бесполезна. При хорошей постановке задачи как пользователь, так и программист ясно и недвусмысленно представляют задачу, которую необходимо выполнить, т.е. в этом случае учитываются интересы как пользователя, так и программиста. Пользователь может планировать использование еще несозданного программного обеспечения, опираясь на знание того, что оно может. Хорошая постановка задачи служит основой для формирования ее решения.

Постановка задачи (спецификация программы ); по существу, означает точное, полное и понятное описание того, что происходит при выполнении конкретной программы. Пользователь обычно смотрит на компьютер, как на черный ящик: для него неважно, как работает компьютер, а важно, что может компьютер из того, что интересует пользователя. При этом основное внимание фокусируется на взаимодействии человека с машиной.

Характеристики Хорошей Постановки Задачи:

Точность , т.е. исключение любой неоднозначности. Не должно возникать вопросов относительно того, каким будет вывод программы при каждом конкретном вводе.

Полнота , т.е. рассмотрение всех вариантов для заданного ввода, включая ошибочный или непредусмотренный ввод, и определение соответствующего вывода.

Ясность , т.е. она должна быть понятной и пользователю и системному аналитику, поскольку постановка задачи – это единственный контракт между ними.

Часто требование точности, полноты и ясности находятся в противоречии. Так, многие юридические документы трудно понять, потому что они написаны на формальном языке, который позволяет предельно точно сформулировать те или иные положения, исключая любые самые незначительные разночтения. Например, некоторые вопросы в экзаменационных билетах иногда сформулированы настолько точно, что студент тратит больше времени на то, чтобы понять вопрос, чем на то чтобы на него ответить. Более того, студент вообще может не уловить основной смысл вопроса из-за большого количества деталей. Наилучшая постановка задачи та, при которой достигается баланс всех трех требований.

Стандартная форма постановки задачи.

Рассмотрим следующую постановку задачи: «Ввести три числа и вывести числа в порядке».

Такая постановка не удовлетворяет приведенным выше требованиям: она не является ни точной, ни полной, ни понятной. Действительно, должны ли числа вводиться по одному на строке или все числа на одной строке? Означает ли выражение «в порядке» упорядочение от большего к меньшему, от меньшего к большему или тот же порядок, в каком они были введены.

Очевидно, что подобная постановка не отвечает на множество вопросов. Если же учесть ответы на все вопросы, то постановка задачи станет многословной и трудной для восприятия. Поэтому Д. Райли предлагает для постановки задачи пользоваться стандартной формой, которая обеспечивает максимальную точность, полноту, ясность и включает:

наименование задачи (схематическое определение);

общее описание (краткое изложение задачи);

ошибки (явно перечислены необычные варианты ввода, чтобы показать пользователям и программистам те действия, которые предпримет машина в подобных ситуациях);

пример (хороший пример может передать сущность задачи, а также проиллюстрировать различные случаи).

Пример. Постановка задачи в стандартной форме.

НАЗВАНИЕ

Сортировка трех целых чисел.

ОПИСАНИЕ

Ввод и вывод трех целых чисел, отсортированных от меньшего числа к большему.

Вводятся три целых числа по одному числу на строке. При этом целым числом является одна или несколько последовательных десятичных цифр, которым может предшествовать знак плюс «+» или знак минус «–».

Выводятся три введенных целых числа, причем все три выводятся на одной строке. Смежные числа разделяются пробелом. Числа выводятся от меньшего к большему, слева направо.

1) Если введено менее трех чисел, программа ждет дополнительного ввода.

Здравствуйте, уважаемые хабровчане! Думаю будет кому-то интересно вспомнить какие модели разработки, внедрения и использования программного обеспечения существовали ранее, какие модели в основном используются сейчас, зачем и что это собственно такое. В этом и будет заключаться моя небольшая тема.

Собственно, что же такое жизненный цикл программного обеспечения - ряд событий, происходящих с системой в процессе ее создания и дальнейшего использования. Говоря другими словами, это время от начального момента создания какого либо программного продукта, до конца его разработки и внедрения. Жизненный цикл программного обеспечения можно представить в виде моделей.

Модель жизненного цикла программного обеспечения - структура, содержащая процессы действия и задачи, которые осуществляются в ходе разработки, использования и сопровождения программного продукта.
Эти модели можно разделить на 3 основных группы:

  1. Инженерный подход
  2. С учетом специфики задачи
  3. Современные технологии быстрой разработки
Теперь рассмотрим непосредственно существующие модели (подклассы) и оценим их преимущества и недостатки.

Модель кодирования и устранения ошибок

Совершенно простая модель, характерная для студентов ВУЗов. Именно по этой модели большинство студентов разрабатывают, ну скажем лабораторные работы.
Данная модель имеет следующий алгоритм:
  1. Постановка задачи
  2. Выполнение
  3. Проверка результата
  4. При необходимости переход к первому пункту
Модель также ужасно устаревшая. Характерна для 1960-1970 гг., по-этому преимуществ перед следующими моделями в нашем обзоре практически не имеет, а недостатки на лицо. Относится к первой группе моделей.

Каскадная модель жизненного цикла программного обеспечения (водопад)

Алгоритм данного метода, который я привожу на схеме, имеет ряд преимуществ перед алгоритмом предыдущей модели, но также имеет и ряд весомых недостатков.

Преимущества:

  • Последовательное выполнение этапов проекта в строгом фиксированном порядке
  • Позволяет оценивать качество продукта на каждом этапе
Недостатки:
  • Отсутствие обратных связей между этапами
  • Не соответствует реальным условиям разработки программного продукта
Относится к первой группе моделей.

Каскадная модель с промежуточным контролем (водоворот)

Данная модель является почти эквивалентной по алгоритму предыдущей модели, однако при этом имеет обратные связи с каждым этапом жизненного цикла, при этом порождает очень весомый недостаток: 10-ти кратное увеличение затрат на разработку . Относится к первой группе моделей.

V модель (разработка через тестирование)

Данная модель имеет более приближенный к современным методам алгоритм, однако все еще имеет ряд недостатков. Является одной из основных практик экстремального программирования.

Модель на основе разработки прототипа

Данная модель основывается на разработки прототипов и прототипирования продукта.
Прототипирование используется на ранних стадиях жизненного цикла программного обеспечения:
  1. Прояснить не ясные требования (прототип UI)
  2. Выбрать одно из ряда концептуальных решений (реализация сцинариев)
  3. Проанализировать осуществимость проекта
Классификация протопипов:
  1. Горизонтальные и вертикальные
  2. Одноразовые и эволюционные
  3. бумажные и раскадровки
Горизонтальные прототипы - моделирует исключительно UI не затрагивая логику обработки и базу данных.
Вертикальные прототипы - проверка архитектурных решений.
Одноразовые прототипы - для быстрой разработки.
Эволюционные прототипы - первое приближение эволюционной системы.

Модель принадлежит второй группе.

Спиральная модель жизненного цикла программного обеспечения

Спиральная модель представляет собой процесс разработки программного обеспечения, сочетающий в себе как проектирование, так и постадийное прототипирование с целью сочетания преимуществ восходящей и нисходящей концепции.

Преимущества:

  • Быстрое получение результата
  • Повышение конкурентоспособности
  • Изменяющиеся требования - не проблема
Недостатки:
  • Отсутствие регламентации стадий
Третьей группе принадлежат такие модели как экстремальное программирование (XP), SCRUM , инкриментальная модель (RUP), но о них я бы хотел рассказать в отдельном топике.

Большое спасибо за внимание!

 


Читайте:



Социальный проект "Летний оздоровительный лагерь при МОУ СОШ с

Социальный проект

УПРАВЛЕНИЕ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ КОПЕЙСКОГО ГОРОДСКОГО ОКРУГА МУНИЦИПАЛЬНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА...

Как создать образовательный проект

Как создать образовательный проект

Легко ли создать образовательный стартап? Что нужно, чтобы такой проект стал действительно успешным? Александр Пашков, сооснователь TutorOnline и...

Кредитное плечо Что происходит если увеличивается плечо финансового рычага

Кредитное плечо Что происходит если увеличивается плечо финансового рычага

Плечо финансового рычага применяют как на предприятии, для расчета необходимой суммы кредита под обеспечение активов, так и в биржевой торговле....

Лицевые счета сотрудников по заработной плате

Лицевые счета сотрудников по заработной плате

Автоматическое заполнение типовых форм документов Печать документов с изображением подписи и печати Фирменные бланки с вашим логотипом и...

feed-image RSS